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FAST COMPLEX CONVOLUTION USING NUMBER THEORETIC TRANSFORMS

1. INTRODUCTION

Pollard [I] has recently given results for the circular convolution of sequences of elements
from finite fields or from rings of integers modulo an integer. Rader [2,3] and Agarwal and Burrus
[4] describe number theoretic transforms which can be used for convolution of real integer
sequences and which are most suitable for imnlementation by digital computer. These transforms.
named the Mersenne and Fermat transforms, can be implemented by a sequence of additions
(or subtractions) and cyclic shifts of bits within a binary word. When these methods are used,
all results are exact and thus there are no errors due to arithmetic roundoff.

Reed and Truong [5] and Agarwal and Burrus [6] define complex number theoretic (CNT)
transforms in a finite field to permit the circular convolution of complex number sequences.
In this report a unified theory of CNT transforms is presented by defining such transforms in a
finite ring. The advantages inherent in the former number theoretic methods are equally valid
nere.

In section 2 a finite ring (perhaps with divisors of 0) with unit is defined that simulates the
complex (Gaussian) integers. In section 3 families of CNT transforms are described, and in
section 4 the convolution theorem is proved. In sections 5 and 6 special CNT transforms are
dealt with that herein are called the complex-Mersenne and complex-Fermat transforms. Finally
in section 7 implementation of the discrete Fourier transform (DFT) using CNT transforms is
discussed.

2. THE FINITE RING

Let m > 0 be an integer and 'm be the set of integers

...- 1,0,(1,)-., (m, l) m odd,

=(2- - 1 0, 1, m even.

hm is a complete system of residues modulo m; i.e., if a is an integer, then a is congruent modulo
m to exactly one of the integers in I,,,, which integer will be denoted by ((a)).

Let

= {a + b6l a, b E I,,j
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VEGH AND LEIBOWITZ

and, if x a= + b1] and y= a + b6j are members of Lm, define their sum and product as

x ff y= ((a1 + a2))+ ((b, + bs)fj,

xtO y= ((ala2 - bbz)) + ((albz + a261))j.

It may he shown that (L-- ,) is a finite ring with Unit

Let A denote the ring of Gaussian integers:

A= {a+biI a and b integers}.

The mapping

definA ed Lb
defined by

[ [z] ] = ((Re z)) + ((Im z))j

may be shown to satisfy

r rz, + Z2]1 [F7.iz S m rr.} it)
and

[[ZIZ2]] = [[Zl]] 0 [[z2]]. (22

It is important to note that if z E A and - m/2 c Re z,Im z c m/2, then

[[Z]] =Z. (3)
Thus, in this case, if z is the result of a computation involving additions, subtractions, and muli-
plications of Gaussian integers, then (1), (2), and (3) indicate that z may be obtained! he
corresponding sequence of operations in L,,. If z is real, then [ [z] ((z)).

3. TZE ITPANSFORMS DEFLNEf

Let N be a positive integer for which there exists an integer M such that ((N t)) = 1. Let
a E A such that for each positive integer t C N there is an element Pt E A for which

L - = ih 4
and such that

[la],= 1. (3)

Let

L11vi= {(zo, Zi, ... , ZN-1) I ZO, Zt, ... , ZN-i E Lm}
and

Al= {(zo, z., ..., ZN-l) I ZO, Z, -..., ZN E A} ,

2
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let T. be the transformation from AIN to LN defined by

Ta(ZO, Z, ... , ZA-tI) = (ZO, Z1, ..., ZN-I),

where for each integer k. 0 6 k C N,

= LLM~~~~~ ziank~~~~~j~~ (6)

and let 7';' be the inverse transformation from LN to LZ defined by

Ta;'(Vo, V, ... , VNI1) = (VO, VI, .. vV-i) 

where for each integer h:, 0 S k < N,

VA,= I Vna<-nk>] (7)

(Here < *. > is used to denote the least nonnegative integer modulo N.)

4. THE CONVOLUTION THEOREM

Theorem: If

T.(Z, Zl., ZN-I) = (ZO, Z 1, ... , ZN-l),

Ta(Wowi, .W., WN-1) = (W1 , WV, ... , JWx-1),

and

CA Zk V,,, 0 , k < N,

then

T;'(C0, C1, ..., C,- 1) = (CO, CI, ... ,C )

where

[N-i 1
Ck X E 11Wk-I (8)

n-0

Proof If

=[ N- I

3
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then

[[ - I ]Cn= [[ I ZkVka <-knj}

N-1 1 FN-l
= A Zndpk Y wta1k) a<-nk>

k~~~~o 1-01- ~ k ]j

rrN 1 N-1 N-I 11

J IX 2, zwteJ 2J0JJ, M 2kn LLP 1=0 k=oJIL

p5z=o k~o
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Consider the sum

k= ]

If t> = 0, then So= (()) If <Ct> # 0, then using (3) and the fact that

< _ ct>1] = 0,

we obtain

>= [cr(l - ac>)33 0> [[S<1>al

=[[Lce2]J 0 [[(1 - <>St]
[<J>]J 0 [[1 zaN<tL] 0.

Hence

e aP+2]] = ((MN)) 1, fcp+ - n>

= O. if <p + -n>

and, using (9),

N = 1 P tc |lel, ' 0 J

= 0,

# 0,

This completes the proof.

Let (z0, zi, ..., ZN-) and (wo, wi, ... , Wv-) be periodic Gaussian integer sequences with
period N, max jzit r, and max tw = &. If r8N < m/2, then

o&zNi<N OiCN
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N-i 5N-
-m/2 C Re 3zpw<n-p>,Im 3 zPw<,,,P> < m/2

p=O P=O

and, as in Eq, (3), for 0 - n < N, 1=N-i110
C= 1[ zPW<?1-P> zpWn-p; (10j

hence the result of the computation given by the theorem is the circular convolution of the two
sequences. To obtain (10) it is sufficient to have

m > 2r5N. (1 1)

5. CMA4PJrI RAUCNTE AN~FADM

Let m be the Mersenne number Mp = 2P-I,p prime,and let N=p. Then with M=(2-2P)/p,

((NM)) = (( 2 ) ((2- 2P )) MP)= 1.

For a = 2 it can be shown that for each integer t, 0 < t < N, the ged ((1 - 2, MP) = 1; hence
there is an integer Pi such that

((( I2913)) = I-

Furthermore

((2§v)) = ((2P)) = ((Mp + i1)) 1.

The conditions of section 3 are now satisfied by m, N, and a, and the transforms T2 and
T' as given in (6) and (7) take the following forms respectively: If z,,= a,,+b bj, 0 - nK N, then
for 0 k < N

= I [ 2nj]= (( a2n)) + ((E bi2nk))j. (12)

If Vn = A, + B0j, 0 6 n < N, then for 0 c k < N

N-i N-i \\ ( ( ~~~~~N-i
V [ =V2 1 ]] 3( 11± A M 3 B((2 nk> ). (13)

12=0 rr=~iiO //=

Here ((...)) means modulo MP.

The implementation of (12) and (13) requires only additions and cyclic shifts of bits within
the binary words a,,, b,, A,,, and BIt. The real and imaginary parts of Zk and vk may also be

5
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VEGH AND LEIBOWITZ

computed concurrently. There is no roundoff error in these Computations, since all quantities 

are represented modulo Mp. XSE

Similarly, longer sequences may be convolved with the complex-Mersenne transform by
using the values of a and N in Table 1. Each of the pairs (c, N} in Table I may be shown to
satisfy (4) and (5). The table entries for a = 2 and a = - 2 were covered by Rader [2] for the
real-Mersenne transform. The entries for a = 2] and a I + i are discussed in Appendix A.
Transforms with these values of a are straightforward even with a = I + J, since powers of a,
expressed as at, are of the form 2-a + 2gbj, a and b taking on values of 0 and + I and s being the
integer part of t/2. In addition, since the values of N can be somewhat composite, some advantage
may be bnhtaned hr iiino a fasit Fnriier transform (FFTX nreedunre

TABLE I - Multipliers a
and sequence lengths N

for m = MP

. 'OMLD" VV DISAT TV A~ICUFORD

Let n be a positive integer, let m = F,, = 22" + 1, N = 2n+1, and let M = 22 R+I1 +l) We see
that

((NM)) = ((22f)) = ((2 N)) = (((F. - 1)2)) = 1

For 0 < t < N, it can be shown that gcd (1 - 21, F,,) 1. Thus, with a = 2, there is for each integer
t, 0 < t < N, an integer 13t such that

(((I - 2'ft%}) = i.

The conditions of section 3 are now satisfied by m, N, and a, and the transformations T, and
Ti I are given by ( 12) and (13) with ((... ) now meaning modulo F,,.

Agarwal and Burrus [4) give other values {a, N} for the real-Fennat transform. These
pairs are also valid for the complex-Fermat transform. In particular

{a 2 2_ 2(2 2 ' - 1), N =2n+21

C!

6
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gives a transform whose length N is twice that given when a = 2. Another pair

{E I + i, N = 211-1}

may be shown to satisfy (4) and (5) (Appendix B); furthermore using these values for {a, NJ
the transforms may be implemented with a cyclic shift of bits within a binary word together
with additions (or subtractions). Since N is a power of 2, the complex-Fermat transform may be
implemented with an FFT type algorithm. To convolve long complex sequences, the multi-
dimensional methods described by Agarwal and Burrus [7] may be applied.

7. COMPUTING THE DuT

The discrete Fourier transform may be implemented using the CNT transform via the
method of Bluestein [8]. Let N be an even integer, let z = (z4,, ... zv-,) be a sequence of complex
numbers of period N, let W = e-2 -j/z1, and let T be the discrete Fourier transform. Then Tz =
(Z0, ZI, ... , ZN-1), where

N-I
Zk= 3z pWas

N-I
= Z,,(WI/2)2 nk

u=0
= (I/2)k 2 X (Z Wa2/2) W(k-n)212

if=o

N-1
(I /)k I dngk 1n,

where

d,= z,,(WJ12)n2 and g,, = (I-i12)n 2 (14)

Since N is even,

dII+N = d,/ and gr+N = gn.

Finally, if WV12, d,,, and g,, are scaled so that they are members of A and if m is chosen subject
to (I1), then the computations may be carried out using the transforms of section 4 or 5 and the
theorem of section 3.

Example: Consider the DFT of (zo, zI, Z2, Z3) ( 1, 1, 1). Let m =F 4 = 216 + 1, N=22, M=
23° a = 28 a2 =- 1, a 3 =-28, a4 = 1), and W',2 = 0.7-0.7] (quantized to one significant decimal
dIg).

7
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Each of the terms in (14) are multiplied by 10 for scaling purposes, and we obtain

(do, di, d2, d3) = (10, 7- 7j, -10, 7 -7J)

and

(go g!g e2, g3A (10, 7+7- 10; 7 , 7 7)

for the sequences to be convolved. If we use (12), the transforms of these sequences are respec-
tively

(Do,Di 2 )(I4-4j2G- 4+4j201

and F
(Go, Gt ,G2, G3 )=(14+ 14j] 20,-14-14j,20}.

(Naturally all computations are modulo 216 + 1.) Taking the product of these transforms, we
have

(Vo VI, V2. V3 )=(392, 400, 392, 400),

and, using (13) for the inverse transform, we obtain

(VO, VI, V2, v3) (398, 0, 4, O)X (15)

Multiplying each member of (15) by the appropriate term, (IW1/2)k2, and rescaling, we obtain,
the OFT

(ZO, Z 4, Z2, Z3) =(3.98, 0, 0.04, 0) (4, 0, O, 0).

8. SUMMARY

A family of transforms were defined that generalized the recently given number theoretic
transforms (NTT) of Rader, Agarwal, and Burrus. These new transforms were used for circular
convolution of finite sequences of complex numbers. The computation of the DFT was given as p
van examnple:iS~,

Several multipliers a were defined that can be used even with real number sequences to N
allow for the convolution of sequences longer than those previously considered.

As with a real NTT, the principal advantages of these transforms are that they may be
implemented with an FFT procedure, without computational roundoff, employing only circular
bit shifts within words and additions (or subtractions).

It was shown that a characteristic of these methods, when used for circular convolution,
was that the computation word size linearly depends on the sequence length.

U
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Appendix A
PROOF OF (4) FOR THE ENTRIES a 2j AND a 1 + j IN TABLE 1

The purpose of this appendix is to prove (4) for a = 1 + j and a = 2j with modulus Mp. Let
m and N be positive integers and t be an integer 0 c t < N. Let

At_ -(1 + j)l - (1 -J)t)- .

The following tabulation allows one to compute with Xt:

(i): (I-24n2 t =8n, 0 C n < N18,
((ii) (1-2 4)2 + (24n'2, t=8n+ I ,

(in ):. i ± (Zj±)z, 2t = 8n t 2|

At = (iv): (1 + 24
.+

1)2 + (24n+1)2, t = 8n + 3 ,O n<NIS.

(v: (1 + 24n±+2)2, t = 8n + 4
(Vi): (1 + 24n+2)2 + (24n+2)2, t = 8n + 5

(vii): 1 + (24n+3)2, t = gn + 6 ...

(viii): (I - 24n1a)2 + (24n+3)2, t = 8n + 7 14
If gcd (Xi, m) I (so that At exists modulo m), then, by defining I

A XT' A 1-(1j9) (I

we see that -t-

(1 -(1 +j)t)P=X AT X= 1.I

This is (4) for a = + 1 and modulus m.

Definition: We say that a belongs to the integer t modulo m (we write a t mod m) if and onMY
if t is the smallest positive integer s such that al l modim. m.

The foltowing results may easily be proved: N

Lemma I: If a -t mod m and al -I mod ra, thentn. t 

Lemma 2: If a # 1 mod m, at = I mod m, and t is a prime number, then a t mod ma.

Lemma 3: If a -b mod m, then gcd (a, m) = gcd (b, m).

Lemma 4: If aIb and ged (b, m) = 1, then gcd (a, m)= I.

Lemma 5: gcd (x, m)= 1 if and only if ged (x2, m)= 1.

10
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For each t we shall show

gcd (A,, m) = 1. (A 1)

In all cases except (i) and (v), X, is of the form

2 k+ I (A2)

or, by virtue of the identity

(228+1 + 2s+1 + 1)(228+1 - 28+1 + 1) = 24s+2 + 1, (A3)

A, divides an integer of the form (A2). Using Lemma 4 in cases (ii) through (viii) and Lemma 5
in case (v), we shall prove (Al) by showing that

gcd (2 k + 1, mn) = I for all values of A. (A4)

We will show case (i) independently.

Let m = Mp = 2P - 1, let p > 2 be a prime, and let N== 8p. Then 2P = I mod Mp, and, using
Lemma 3, it will be sufficient to prove (A4) for k, 0 • k < p.

Assume gcd (2k + 1, Mp) q qd > 1, where q is prime. Then

2P -=I mod q and 22k- l mod q.

Using Lemma 2, 2 - p mod q. Using Lemma 1, p I 2k. Since p is odd, then p j k and hence k - p,
which is a contradiction. Thus we have proved (A4) for all cases except (i). In this case, we need
only show via Lemma 5 that

gcd ( I1-24 n, M )l = I n < p. (AS)

Once again if we assume that gcd (I -24, MA) = qd > 1, q a prime, then

24n = I mod q and 2P = I mod q.

Using Lemma 2, 2 - p mod q. Using Lemma 1, pj4n. Since p is odd, then PI n; hence n - p,
which is a contradiction. Thus we have (AS) and have proved (A l)for each t, 0 < t < N. Therefore
a =I +] has property (4) mod MA.

Let m = MP, N = 4p, a = 2j, and

a A (I - (2j)i)(l - (-2j)9, 0 < t < N.

Then

I I
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nn: (1 -24U)

I
f1D: I + 28n+2,

at= =
| : (1 + 24n+2)2,

( t: I + 28n+8.

t = 4n, 0 < nKp,

t=4n + I
, 0 C n < p.

t = 4n + 2

t= 4n + 3

We see using (A4), and also Lemma 5 in case ®, that

ged (at M..) 1

in cases ($), ®, and (a). By Lemma 5 and (AM) we have ®.Thus ar 1 mod Mp exists. Now
defining

I = - '(1 -(2j)')

we have

(1 - (2])5Q = atc1 _ I

Thus t =2j has property (4) mod Mp.

o ct <N.

12
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Appendix B
PROOF OF (4) FOR a = I + j, N = 2fl+2, AND m = Fk

The purose of this appendix is to prove (4) fnr " = I + j with mnducibi Fi = 22k ± V We
use the notation of Appendix A. If we use the identity (A3) and cases (i) through (viii) of Appendix
A, we find that Xt divides the. following integers in these respective cases:

(i: (I - 24n)2,

216n+2 + 1

28n+2 + 1,

216n+6 + I,

(24n±+2 + 1)2

2 16n+10 + I,

28n+6 + I,

216±+ 14 + I,

t = 8n,

t= n + I

t = Sn + t:= 8n+ A3

t~ = n + 5j
t- 8n + 6
t = Sn+ 7

0 < n < N/B.

, O - n < N18.

Let m = Fk, k> 1, and N = 2k+2. If q is a prime divisor of Fk-, then

22k _ I mod q and 2 2 k1t 5 I mod q.

If 2 - t mod q, then using Lemma 7 we have

tI 2k+±

or t 2 2A for some positive integer Z -fi k ± 1. It 2< k + 1, then

221' I mod t

implies

(2 2')0'-' I mod q

or

226 5 I mod q,

which is a contradiction. Thus t = 2V+' or

2 - 2kT1 mod q.

In case (ii) assume for some n, 0 6 n < 2k-1, that

gcd (216n+2 + 1, Fk) = qd > 1,

Then

216n+2 - I mod q

13
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and

232n±+4 I mod q.

Hence, by Lemma 1 and (BH), 2k+i | 32n + 4. This is possible only if k - 1, which is a contradic-
tion. Thus

ged (216n+2 + 1, Fk) = 1 0 - n < 2k-1.

Each of the cases (iii) through (viii) leads to the same conclusion.

In case (i), assume for some n, 0 < n K 2*- 1,

gcd ((1 -248)2, Fk) = qd > 1, q prime.

Then 24n = I mod q and, by Lemma 1 and (B1), 2k-1-4n; or n - 2 k-i, which is contradiction.
Hence ged ((1 - 24n)2Fk) = 1. Thus, for 0 < t C N, Xi divides an integer which is relatively
prime to Fk, so that, by Lemma 3,

gcd (Xt, Ff-1 a 1, 0K < t <N

Thus XAt exists modulo Fk, and, as in Appendix A, with

At-At 1(1-(1-j

we see that

(1 -(1 + jf)f3t X-(TXt = 1;

so a = 1 + has property (4) mod Fk.

14


